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Introduction

Goal −→ Expose techniques used to study spin-glass systems:

Replica trick;
Replica Symmetry Breaking.

These methods are used to study disordered systems.

Techniques have been useful in other fields like machine learning,
enabling calculations such as knowing the storage capacity of
certain models.
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Outline

Disordered Systems;

Replica trick;

The p-spin spherical model:

Annealed free energy
Replica symmetric free energy
Replica symmetry breaking free energy
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Disordered Systems - Spin-Glasses

The replica method is useful when studying disordered systems.

Disorder −→ Absence of symmetries/correlations.

Spin-glasses are famous examples of this, belonging to the class
of quenched disordered systems.
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Disordered Systems - Spin-Glasses
Examples

As an example take the Edwards-Anderson model:

H = −
∑
<ij>

Jijσiσj (1)

Or the Sherrington-Kirkpatrick model:

H = −
∑
ij

Jijσiσj (2)

Disorder is present via the random couplings J.

Quenched =⇒ J are constant in time (or at least at the timescale
where the spins fluctuate).
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Disordered Systems
Frustration

Disorder is frustrating.

Frustration −→ There exists loops where product of couplings is
negative.

Impossible to satisfy all couplings at the same time.

This leads to multiplicity of states with the same energy.
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Self-averaging Quantities
How to deal with disorder?

In principle, every observable is some function O(σ, J) which
depends on the specific configuration of couplings J and spins σ.

However, for large enough systems we expect that physical
properties do not depend on J.

That is, we expect physical quantities to be self-averaging.

For increasingly large N the distribution for any physical quantity is
sharply peaked around its average value and the variance goes
to zero.
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Free energy

The free energy of a given system, in the thermodynamic limit is:

F = lim
N→∞

− 1

βN

∫
dJp(J) log

∫
dσe−βH(σ,J) (3)

This is a quenched average. For each realization of the system we
first compute the free energy and then we average it out over J.

One way of solving integrals like the above is through the replica
trick.

A simpler, crude approximation is given by

F = − 1

βN
log

∫
dJp(J)

∫
dσe−βH(σ,J) (4)

which is called the annealed approximation, valid for high
temperatures.
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Replica trick

The replica trick stems from the following remark:

logZ = lim
n→0

1

n
logZn = lim

n→0

Zn − 1

n
(5)

The above always holds true in the real numbers.

The trick is to promote n to an integer, meaning that

Zn =

∫
dσ1 · · · dσne−βH(σ1,J)−···−βH(σn,J) . (6)

Performing the above calculation is only valid for integers, however
we will perform an analytical continuation of the results to realize
the limit.
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Average values in disordered systems and the replica trick

On disordered systems, at low temperature and in the
thermodynamic limit we can have ergodicity breaking.

It is useful to split these parts into ”pure states” and if to each
configuration we can assign one pure state then

〈A〉 =
1

Z

∫
DσeβH(σ)A(σ) =

1

Z

∑
α

∫
σ∈α

DσeβH(σ)A(σ) =
∑
α

wα 〈A〉α

(7)

An alternative form of the replica trick is:

〈A〉 = lim
n→0

∫
Dσ1 · · ·DσnA(σ1)e−βH(σ1,J)−···−βH(σn,J)
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P-spin spherical model

The Hamiltonian is given by:

H = −
N∑

i1>···>ip=1

Ji1···ipσi1 · · ·σip , p ≥ 3 ; (8)

To keep energy finite, the spins are continuous real variables such
that

∑N
i=1 σ

2
i = N. → spherical constraint

The couplings follow a Gaussian distribution:

p(J) = exp

(
−1

2
J2 2Np−1

p!

)
(9)

Notice that the variance goes to zero in the thermodynamic limit.
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P-spin spherical model
Annealed Free Energy

Annealed Free Energy → Average of the partition function over
the disorder:

Z =

∫
Dσ

∫ ∏
i1>···>ip≥1

dJNi1···ip exp

[
−J2

i1···ip
Np−1

p!
+ Ji1···ipβσi1 · · ·σip

]
(10)

The integral over the spins is over a spherical surface (remember
the constraint!).

The integrals on the couplings are Gaussian integrals.

Sidenote

We can ignore the normalization constants as they will disappear
when we take the logarithm and the thermodynamic limit.
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Annealed Free Energy
Calculation

Performing the Gaussian integration for each coupling leaves us
with:

Z =

∫
Dσ exp

 β2

4Np−1
p!

N∑
i1>···>ip≥1

σ2
i1 · · ·σ

2
ip

 (11)

As N →∞, we have that p!
∑N

i1>···>ip≥1 ≈
∑N

i1···ip=1. This
simplifies to:

Z =

∫
Dσ exp

[
β2

4Np−1

(
N∑
i=1

σ2
i

)p]
= exp

[
Nβ2

4

]
Ω (12)

where Ω is the surface of the sphere.

Free Energy per site

F = −β/4− log Ω

βN
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P-spin Spherical Model
Replica Calculation

To make use of the replica trick we need to calculate Zn. We will
make use of indices a, b to signify the replicas.

Z n =

∫
Dσa

i

∫ N∏
i1>···>ip≥1

dJNi1···ip exp

[
−J2

i1···ip
Np−1

p!
+ Ji1···ipβ

n∑
a=1

σa
i1 · · ·σ

a
ip

]
(13)

Performing the Gaussian integration and using the thermodynamic
limit to swap the sums yields:

Zn =

∫
Dσai exp

 β2

4Np−1

n∑
a,b=1

(
N∑
i=1

σai σ
b
i

)p
 (14)

We start with coupled sites and decoupled replicas and after
averaging over the disorder we decoupled the sites and coupled
the replicas.
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Overlap and self-overlap of spin configurations

Overlap of spin configurations

An useful quantity to measure the similarity between two different
spin configurations σ and τ is their overlap:

qστ =
1

N

N∑
i=1

σiτi (15)

The self-overlap is given by qσσ = 1
N

∑N
i=1 σ

2
i .

With Ising spins, si = ±1 the overlap can be:

1→ Configurations are completely correlated
−1→ Configurations are completely anti-correlated
0→ Configurations are uncorrelated

In our case, the overlaps between replicas will be represented by
Qab. The spherical constraint ensures that Qaa = 1.

Furthermore we have that −1 ≤ Qab ≤ 1.
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Replica Calculation
Reframing the spin integral

An useful property of the Dirac delta is:∫
RN

f (x)δ(g(x))dx =

∫
g−1(0)

f (x)

|∇g |
dσ(x) , (16)

where σ(x) is a surface measure of g−1(0).

Strategy → pass the spherical integral to an integral over all
possible spins using g(σai ) = N −

∑
i (σ

a
i )2 =⇒ |∇g | = 4N.

Pass to the Fourier representation of the Dirac delta.

We also have that:

1 =

∫
dQabδ

(
NQab −

∑
i

σai σ
b
i

)
=

∫
dQab

∫
dλabe

λab(NQab−
∑

i σ
a
i σ

b
i )

(17)
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Replica Calculation

Using the Dirac delta property from the previous slide and
introducing the integrals over Qab for a 6= b we have:

Zn =

∫
DQab

∫
Dλab

∫
Dσa

i exp

β2N

4

n∑
a,b=1

Qp
ab + N

n∑
a,b=1

λabQab −
N∑
i=1

n∑
a,b=1

λabσ
a
i σ

b
i


(18)

We can perform the integral over the spins, which is an
n-dimensional Gaussian integral, yielding:

Zn =

∫
DQab

∫
Dλab exp [−NS(Q, λ)] (19)

with

S(Q, λ) = −β
2

4

n∑
a,b=1

Qp
ab −

n∑
a,b=1

λabQab +
1

2
log det(2λ) (20)
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Some caveats

Caveat 1

The Free energy is given by:

F = − lim
N→+∞

lim
n→0

1

nβN
log

∫
DQabDλab exp [−NS(Q, λ)] (21)

but we are unable to calculate the above unless we swap the limits.

Caveat 2

We need to know which saddle point is the correct one.

Criterion → First correction to the saddle point method is a
Gaussian integral, which should be well defined.

Thus the eigenvalues of Hessian of S(Q, λ) must all be positive.
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The saddle point calculation

Using the formula ∂
∂λab

log detλ = (λ−1)ab the saddle point
equations for λab and Qab are:

2λab = (Q−1)ab

0 =
β2p

2
Qp−1

ab + (Q−1)ab

Using the above and performing the integral, we get

Free energy after saddle point calculation

F = − lim
n→0

1

2nβ

β2

2

n∑
a,b=1

Qp
ab + log detQ

 (22)
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Replica Symmetry Ansatz

As all replicas are equivalent, it is not far-fetched to assume a
replica symmetric form for Q:

Qab = q0 + (1− q0)δab (23)

As for the inverse matrix elements we have:

(Q−1)ab =
1

1− q0
δab −

q0

(1− q0)[1 + (n − 1)q0]
(24)

This makes the saddle point equation

β2p

2
qp−1

0 − q0

(1− q0)2
= 0 (25)

q0 = 0 is the paramagnetic solution, making it so that F = −β
4 ,

the result obtained in the annealed calculation!
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Replica Symmetry Ansatz
Non-trivial solutions

We can rewrite the saddle point equation as

qp−2
0 (1− q0)2 =

2

β2p
(26)

For large β, the solutions are associated with negative eigenvalues.
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A brief detour
An order parameter

Edwards-Anderson order parameter

q(1) =
1

N

∑
i

〈σi 〉2

We can rewrite the order parameter as:

q(1) =
1

N

∑
i,αβ

wαwβ 〈σi 〉α 〈σi 〉β =
∑
αβ

wαwβqαβ =

∫
dqP(q)q (27)

where P(q) =
∑

αβ wαwβδ(q − qαβ) is the overlap distribution.
Similarly we find:

q(k) =
1

Nk

∑
i1···ik

〈σi1 · · ·σik 〉
2 =

∫
dqP(q)qk (28)

We can also use the replica trick to compute the order parameter:

1

N

∑
i

〈σi 〉2 = lim
n→0

∫
Dσai

1

N

∑
i

σ1
i σ

2
i e
−β

∑
a H(σa) = · · · = lim

n→0
QSP

12
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A brief detour
An order parameter

If there is no replica symmetry then it could be that QSP
12 6= QSP

34 .
Nonsense! Choice of indices should not matter!

There may be other saddle points with the same free energy which
correspond to the several choices of indices we can make.

As such, we should average all these saddle points, yielding:

q(1) = lim
n→0

2

n(n − 1)

∑
a>b

QSP
ab (29)

and similarly we can generalize

q(k) = lim
n→0

2

n(n − 1)

∑
a>b

(QSP
ab )k (30)
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Connecting the physics with the replicas

The previous equations leads us to conclude that∫
dqP(q)f (q) = lim

n→0

2

n(n − 1)

∑
a>b

f (QSP
ab ) (31)

With f (q) = δ(q − q′) we get:

P(q) = lim
n→0

2

n(n − 1)

∑
a>b

δ(QSP
ab − q) (32)

The entries of QSP
ab are the possible overlaps between pure states.

The total number of equal elements is related to the probability of
such an overlap occurring.
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Revisiting the replica symmetric ansatz

The average overlap distribution is P(q) = δ(q − q0).

The overlap distribution also contains the self-overlaps of the pure
states.

As there is only one possible overlap this must be the self-overlap
of the only existing pure state, the paramagnetic state.

Assuming a replica symmetric ansatz =⇒ System only has one
equilibrium state.

If there is ergodicity breaking at low temperatures we must search
for a replica symmetry breaking form for the matrix in order to
have more than one equilibrium state.
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Replica symmetry breaking

Overlap between replicas is related to overlap between
states.

The self-overlap of a state is the average overlap between
configurations of said state.

We expect that the overlap between configurations of the same
state is greater than the one with configurations from different
states.

What is the simplest possible ergodicity breaking we can
have?

Have the overlap between configurations of the same state be
q1 < 1.
Have the overlap between configurations of different states be q0,
with q1 > q0.
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Replica symmetry breaking
The overlap matrix

Replicas are like configurations! Let us cluster them into
”states”. Replicas may belong to the same state or not.

Assuming a clustering of m = 3 replicas per group we have:

Qab =



1 q1 q1

q1 1 q1

q1 q1 1
q0 · · ·

q0

1 q1 q1

q1 1 q1

q1 q1 1
...

. . .


(33)

This is called the one step replica symmetry breaking, or 1RSB.
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Replica symmetry breaking
Overlap distribution

The associated overlap distribution is:

P(q) =
m − 1

n − 1
δ(q − q1) +

n −m

n − 1
δ(q − q0) (34)

with 1 ≤ m ≤ n.

Taking the n→ 0 limit we obtain

P(q) = (1−m)δ(q − q1) + mδ(q − q0) (35)

It is clear then that for P(q) to remain a probability distribution we
must have 0 ≤ m ≤ 1, after taking the limit n→ 0.

Thus we have three parameters, the two values of the overlaps q0

and q1 and the parameter m, which controls the probability of
each overlap.
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Replica symmetry breaking
The free energy

Knowing the structure of the matrix Qab if we calculate its
eigenvalues and their multiplicity we are able to simplify the free
energy to:

−2βF1RSB =
β2

2
[1 + (m − 1)qp1 −mqp0 ] +

m − 1

m
log(1− q1)+

+
1

m
log[m(q1 − q0) + (1− q1)] +

q0

m(q1 − q0) + (1− q1)

Both the q1 → q0 as well as the m→ 1 limits lead to the same
free energy one would obtain in the replica symmetric ansatz.

The only remaining thing to do is to solve the saddle point
equations with respect to the parameters m, q0, q1.
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Replica symmetry breaking
Solving the saddle point equations

The equation ∂q0F = 0 gives q0 = 0. As we are in the absence of
external magnetic field we expect the distribution of states across
phase space to be symmetric, with all states being orthogonal to
each other.

The other two equations are:

(1−m)

(
β2

2
pqp−1

1 − q1

(1− q1)[(m − 1)q1 + 1]

)
=0 (36)

β2

2
qp1 +

1

m2
log

(
1− q1

1− (1−m)q1

)
+

q1

m[1− (1−m)q1]
=0 (37)

We can solve the first equation by setting m = 1. There we find a
non-trivial stable solution qs at a temperature Ts .

Note that q1 = 0 is also a solution, leaving m undetermined. →
paramagnetic phase
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Replica symmetry breaking
Interpreting the transition

For T > Ts we only have one state and P(q) = δ(q − q0).

At T = Ts we already have qs 6= 0, thus the states are already well
formed.

Lowering the temperature gives a solution with m < 1 and q1 > qs .

However, m = 1 makes it so that the probability of these states is
zero, growing as we continue to decrease the temperature.

P(q) = (1−m)δ(q − q1) + mδ(q − q0) (38)
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Concluding Remarks

The 1RSB has been proven to be exact. If we were to perform
additional steps we would obtain trivial contributions from the
saddle point equations.

Using the 1RSB we found a transition between the paramagnetic
phase and a spin-glass phase at low temperature.

The reason why the states are well-formed at the transition has to
do with the existence of metastable states above Ts . These are not
captured by this static analysis.
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The end.

Any questions?
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