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Introduction

@ Goal — Expose techniques used to study spin-glass systems:
e Replica trick
o Replica Symmetry Breaking.
@ These methods are used to study disordered systems.
@ Techniques have been useful in other fields like machine learning,
enabling calculations such as knowing the storage capacity of
certain models.
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@ Disordered Systems;

@ Replica trick;
@ The p-spin spherical model:

o Annealed free energy
o Replica symmetric free energy
o Replica symmetry breaking free energy
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Disordered Systems - Spin-Glasses

@ The replica method is useful when studying disordered systems.
@ Disorder — Absence of symmetries/correlations.

@ Spin-glasses are famous examples of this, belonging to the class
of quenched disordered systems.
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Disordered Systems - Spin-Glasses
Examples

As an example take the Edwards-Anderson model:

H=—- Z Jijoio; (1)

<ij>

Or the Sherrington-Kirkpatrick model:

H=— Z Jijoio; (2)
ij

@ Disorder is present via the random couplings J.

@ Quenched = J are constant in time (or at least at the timescale
where the spins fluctuate).
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Disordered Systems

Frustration

Disorder is frustrating.

Frustration — There exists loops where product of couplings is
negative.

@ Impossible to satisfy all couplings at the same time.
@ This leads to multiplicity of states with the same energy.
+J +J +J
+J)- =) 4 +J +J +J
iy -J )
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Self-averaging Quantities
How to deal with disorder?

@ In principle, every observable is some function O(o, J) which
depends on the specific configuration of couplings J and spins o.

@ However, for large enough systems we expect that physical
properties do not depend on J.

@ That is, we expect physical quantities to be self-averaging.

@ For increasingly large N the distribution for any physical quantity is
sharply peaked around its average value and the variance goes
to zero.
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@ The free energy of a given system, in the thermodynamic limit is:

F= Jim o [ (g [ doe e )

@ This is a quenched average. For each realization of the system we
first compute the free energy and then we average it out over J.

@ One way of solving integrals like the above is through the replica
trick.

@ A simpler, crude approximation is given by

F=— ﬂ  log / dJp(J) / doe PH(@)) (4)

which is called the annealed approximation, valid for high
temperatures.
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Replica trick

@ The replica trick stems from the following remark:
— 1 — Zn—1
log Z = lim —log Z" = li
R LT L ©

The above always holds true in the real numbers.

The trick is to promote n to an integer, meaning that

27— [ doy - doye A=) (6)

Performing the above calculation is only valid for integers, however
we will perform an analytical continuation of the results to realize
the limit.
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Average values in disordered systems and the replica trick

@ On disordered systems, at low temperature and in the
thermodynamic limit we can have ergodicity breaking.

@ It is useful to split these parts into " pure states” and if to each
configuration we can assign one pure state then

(A) = ;/DaeﬂH(” ZZ/ DoeHO) A(o) = Zwa N
(7)

@ An alternative form of the replica trick is:

(A) = lim /Dal -+ Doy Aoy )eBH(o1d)——BH(on.J)

n—0
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P-spin spherical model

@ The Hamiltonian is given by:

N
H=-— Z J;l...;pU,'l-"U,'p ,pZ?) ) (8)

> >ip=1

@ To keep energy finite, the spins are continuous real variables such
that >, 02 = N. — spherical constraint

@ The couplings follow a Gaussian distribution:

p(J) = exp (—éﬁz’v:!_l) )

Notice that the variance goes to zero in the thermodynamic limit.
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P-spin spherical model
Annealed Free Energy

@ Annealed Free Energy — Average of the partition function over
the disorder:

_ prl
Z:/Do/ H dJ,-’IV..,,-p exp [—J,-f...,-p ol +Ji1---i,350;1--~0ip}

>e>ip>1
(10)

@ The integral over the spins is over a spherical surface (remember
the constraint!).

@ The integrals on the couplings are Gaussian integrals.

Sidenote

We can ignore the normalization constants as they will disappear
when we take the logarithm and the thermodynamic limit.
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Annealed Free Energy
Calculation

@ Performing the Gaussian integration for each coupling leaves us

with:
- & SR
Z:/DO'eXp Wp' Z O'l'l“’(fl'p (11)
i>>ip>1

@ As N — oo, we have that p! ZII'Y>--->ip>1 ~~ Zill/---i,,:r This

simplifies to:
N p
52 ) _ Nﬁz
4NP71 2 ;i = exp T Q (12)

Z:/Daexp

where Q is the surface of the sphere.

Free Energy per site

log Q
BN

F=-B/4-
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P-spin Spherical Model
Replica Calculation

@ To make use of the replica trick we need to calculate Z7. We will
make use of indices a, b to signify the replicas.

o N Np_l n
7n = /Daf/ [T . exp [—J,?l__,.p +JiiyBY 03 U]
i a=1

|
> >ip>1 P
(13)

@ Performing the Gaussian integration and using the thermodynamic
limit to swap the sums yields:

n N p
—n a 62 a_b
V4 :/Da,- exp | 1 np Z Zai o; (14)

a,b=1 \i=1

@ We start with coupled sites and decoupled replicas and after
averaging over the disorder we decoupled the sites and coupled
the replicas.
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Overlap and self-overlap of spin configurations

Overlap of spin configurations

An useful quantity to measure the similarity between two different
spin configurations o and 7 is their overlap:

1 N
dor = N .ZlaiTi (15)
=

The self-overlap is given by g,o = & >, 7.

o With Ising spins, s; = £1 the overlap can be:
e 1 — Configurations are completely correlated
e —1 — Configurations are completely anti-correlated
e 0 — Configurations are uncorrelated
@ In our case, the overlaps between replicas will be represented by
Q.b. The spherical constraint ensures that Q,, = 1.
@ Furthermore we have that —1 < Q,p < 1.
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Replica Calculation
Reframing the spin integral

@ An useful property of the Dirac delta is:

f(x)

——=do(x) , 16
o) [VE] (x) (16)

F(x)5(e0x)dx = [

RN

where o(x) is a surface measure of g~1(0).

o Strategy — pass the spherical integral to an integral over all
possible spins using g(o7) = N — 3" .(07)? = |Vg| = 4N.

@ Pass to the Fourier representation of the Dirac delta.

@ We also have that:

1= /anb5 (NQab_ZU;?U,b> = /anb/dAabeAab(NQab_zio.}ao_lp
| (17)
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Replica Calculation

@ Using the Dirac delta property from the previous slide and
introducing the integrals over Q. for a # b we have:

Z"*/DQab/D/\ab/Da exp|: +NZ)\aanb_ZZ>\abUU:|

abl a,b=1 i=1 a,b=1

(18)
@ We can perform the integral over the spins, which is an
n-dimensional Gaussian integral, yielding:
77— [ DQu [ Daspexp[-NS(Q. ) (19)

with

2 n n
S(Q, )\) = —% Z ng - Z Aaanb + % |Og det(2)‘) (20)

a,b=1 a,b=1
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Some caveats

The Free energy is given by:

F=— Ilim Ilim
N—+oco n—0 n

1/v o / DQ.sD Moy exp [-NS(Q, )] (21)

but we are unable to calculate the above unless we swap the limits.
v

@ We need to know which saddle point is the correct one.

o Criterion — First correction to the saddle point method is a
Gaussian integral, which should be well defined.

@ Thus the eigenvalues of Hessian of S(Q, A\) must all be positive.
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The saddle point calculation

o Using the formula 5{—logdet A = (A1), the saddle point
equations for A, and Qp are:

2Xa0 = (@) ab
’p 1
0= TQ‘I;b_ + (Q_l)ab

@ Using the above and performing the integral, we get

Free energy after saddle point calculation

1 (B
F——rlﬂqom 23;1Qab+logdet0 (22)
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Replica Symmetry Ansatz

@ As all replicas are equivalent, it is not far-fetched to assume a
replica symmetric form for Q:

Qab = g0 + (1 — q0)dab (23)

@ As for the inverse matrix elements we have:

1 . 1 - do
(Q Dab = 702 A= o)+ ("= Daol (24)

@ This makes the saddle point equation

P p1 q0
— ——=0 25
2 9 (1 _ q0)2 ( )
@ go = 0 is the paramagnetic solution, making it so that F = —%,

the result obtained in the annealed calculation!
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Replica Symmetry Ansatz
Non-trivial solutions

@ We can rewrite the saddle point equation as
2

p—2 2
% (1—qo)" = = (26)
0 32p
o For large 3, the solutions are associated with negative eigenvalues.
05 1| I
05 0 05 1 15
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A brief detour
An order parameter

Edwards-Anderson order parameter

1 _
= ZI: <a,-)2

@ We can rewrite the order parameter as:
1 - _
= NZWaWﬁ <0i>a <0i>5 :ZWaWﬁqaﬁ :/qu(q)q (27)
i,af af

where P(q) = >_,5 wawgd(q — qag) is the overlap distribution.
@ Similarly we find:

Nk Z iy ** Oj) _/qu( ) (28)

i1k

@ We can also use the replica trick to compute the order parameter:

! N2 =i 1.2, B, H(0?) — ... — im OSP
NZ<U’> _ATO/DUZUUE o= Jim Qp
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A brief detour
An order parameter

@ If there is no replica symmetry then it could be that szp #* Q35f
Nonsense! Choice of indices should not matter!

@ There may be other saddle points with the same free energy which
correspond to the several choices of indices we can make.

@ As such, we should average all these saddle points, yielding:

g® = lim ——— Z QF (29)

n—0 n n— 1
a>b

and similarly we can generalize

g® = lim ——>— 37 (QSF)* (30)

n—0 n(n — 1) =

23/34



Connecting the physics with the replicas

@ The previous equations leads us to conclude that

/qu(q)f( )= lim 2 Zf (QF (31)
e With f(q) = 0(q — q’) we get:
W:,{@On 7y 2 5@ ) (32)
a>b

@ The entries of Qaslf are the possible overlaps between pure states.
The total number of equal elements is related to the probability of
such an overlap occurring.

24 /34



Revisiting the replica symmetric ansatz

@ The average overlap distribution is P(q) = d(g — qo)-

@ The overlap distribution also contains the self-overlaps of the pure
states.

@ As there is only one possible overlap this must be the self-overlap
of the only existing pure state, the paramagnetic state.

@ Assuming a replica symmetric ansatz = System only has one
equilibrium state.

@ If there is ergodicity breaking at low temperatures we must search
for a replica symmetry breaking form for the matrix in order to
have more than one equilibrium state.
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Replica symmetry breaking

o Overlap between replicas is related to overlap between
states.

@ The self-overlap of a state is the average overlap between
configurations of said state.

@ We expect that the overlap between configurations of the same
state is greater than the one with configurations from different
states.

@ What is the simplest possible ergodicity breaking we can
have?

e Have the overlap between configurations of the same state be

g1 < 1.
e Have the overlap between configurations of different states be gy,
with g1 > qo.
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Replica symmetry breaking
The overlap matrix

@ Replicas are like configurations! Let us cluster them into
"states”. Replicas may belong to the same state or not.

@ Assuming a clustering of m = 3 replicas per group we have:

1 g ¢
a1 ¢ qo
G g 1
Qab = I ¢ ¢ (33)
qo a1l ¢
g g 1

@ This is called the one step replica symmetry breaking, or 1RSB.
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Replica symmetry breaking

Overlap distribution

@ The associated overlap distribution is:

Pa)=""Toa—a)+ " Tsa—a)  (38)

with 1 < m<n.
@ Taking the n — 0 limit we obtain

P(q) = (1—m)é(q — q1) + mé(q — qo) (35)

@ It is clear then that for P(q) to remain a probability distribution we
must have 0 < m < 1, after taking the limit n — 0.

@ Thus we have three parameters, the two values of the overlaps qg
and g; and the parameter m, which controls the probability of
each overlap.
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Replica symmetry breaking
The free energy

@ Knowing the structure of the matrix Q.5 if we calculate its
eigenvalues and their multiplicity we are able to simplify the free
energy to:

m—1
log(1 — q1)+
m

2
—2BFirss :%[1 + (m—1)qf — mqg] +

qo0
m(q1 — qo) + (1 — q1)

+ loglm{as — a0) + (1~ )] +

@ Both the g1 — qp as well as the m — 1 limits lead to the same
free energy one would obtain in the replica symmetric ansatz.

@ The only remaining thing to do is to solve the saddle point
equations with respect to the parameters m, qo, g1.
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Replica symmetry breaking
Solving the saddle point equations

@ The equation 9q,F = 0 gives qo = 0. As we are in the absence of
external magnetic field we expect the distribution of states across
phase space to be symmetric, with all states being orthogonal to
each other.

@ The other two equations are:

62 p—1 a1 o
(x=m) (2”‘71 - (1—q1)[(m—1)q1+1]> =0 (30)

8%, 1—-q q B
S o8 (1 Y m)ql> om0

@ We can solve the first equation by setting m = 1. There we find a
non-trivial stable solution gs at a temperature Ts.

@ Note that g1 = 0 is also a solution, leaving m undetermined. —
paramagnetic phase
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Replica symmetry breaking

Interpreting the transition

@ For T > T, we only have one state and P(q) = 6(q — qo).

o At T = T we already have gs # 0, thus the states are already well
formed.

@ Lowering the temperature gives a solution with m < 1 and g1 > gs.

@ However, m = 1 makes it so that the probability of these states is
zero, growing as we continue to decrease the temperature.

P(q) = (1 —m)d(q — q1) + md(q — qo) (38)
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Concluding Remarks

@ The 1RSB has been proven to be exact. If we were to perform
additional steps we would obtain trivial contributions from the
saddle point equations.

@ Using the 1RSB we found a transition between the paramagnetic
phase and a spin-glass phase at low temperature.

@ The reason why the states are well-formed at the transition has to
do with the existence of metastable states above T,. These are not
captured by this static analysis.
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Any questions?
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