Spin Glasses and Replica Symmetry

Carlos Couto

Instituto Superior Técnico - Departamento de Física
Quantum Agora - 28th of October 2021

Introduction

- Goal \longrightarrow Expose techniques used to study spin-glass systems:
- Replica trick;
- Replica Symmetry Breaking.
- These methods are used to study disordered systems.
- Techniques have been useful in other fields like machine learning, enabling calculations such as knowing the storage capacity of certain models.

Outline

- Disordered Systems;
- Replica trick;
- The p-spin spherical model:
- Annealed free energy
- Replica symmetric free energy
- Replica symmetry breaking free energy

Disordered Systems - Spin-Glasses

- The replica method is useful when studying disordered systems.
- Disorder \longrightarrow Absence of symmetries/correlations.
- Spin-glasses are famous examples of this, belonging to the class of quenched disordered systems.

Disordered Systems - Spin-Glasses

Examples

As an example take the Edwards-Anderson model:

$$
\begin{equation*}
H=-\sum_{<i j>} J_{i j} \sigma_{i} \sigma_{j} \tag{1}
\end{equation*}
$$

Or the Sherrington-Kirkpatrick model:

$$
\begin{equation*}
H=-\sum_{i j} J_{i j} \sigma_{i} \sigma_{j} \tag{2}
\end{equation*}
$$

- Disorder is present via the random couplings J.
- Quenched $\Longrightarrow J$ are constant in time (or at least at the timescale where the spins fluctuate).

Disordered Systems

Frustration

- Disorder is frustrating.
- Frustration \longrightarrow There exists loops where product of couplings is negative.
- Impossible to satisfy all couplings at the same time.
- This leads to multiplicity of states with the same energy.

- In principle, every observable is some function $O(\sigma, J)$ which depends on the specific configuration of couplings J and spins σ.
- However, for large enough systems we expect that physical properties do not depend on J.
- That is, we expect physical quantities to be self-averaging.
- For increasingly large N the distribution for any physical quantity is sharply peaked around its average value and the variance goes to zero.
- The free energy of a given system, in the thermodynamic limit is:

$$
\begin{equation*}
F=\lim _{N \rightarrow \infty}-\frac{1}{\beta N} \int d J p(J) \log \int d \sigma e^{-\beta H(\sigma, J)} \tag{3}
\end{equation*}
$$

- This is a quenched average. For each realization of the system we first compute the free energy and then we average it out over J.
- One way of solving integrals like the above is through the replica trick.
- A simpler, crude approximation is given by

$$
\begin{equation*}
F=-\frac{1}{\beta N} \log \int d J p(J) \int d \sigma e^{-\beta H(\sigma, J)} \tag{4}
\end{equation*}
$$

which is called the annealed approximation, valid for high temperatures.

Replica trick

- The replica trick stems from the following remark:

$$
\begin{equation*}
\overline{\log Z}=\lim _{n \rightarrow 0} \frac{1}{n} \log \overline{Z^{n}}=\lim _{n \rightarrow 0} \frac{\overline{Z^{n}}-1}{n} \tag{5}
\end{equation*}
$$

- The above always holds true in the real numbers.
- The trick is to promote n to an integer, meaning that

$$
\begin{equation*}
\overline{Z^{n}}=\int d \sigma_{1} \cdots d \sigma_{n} \overline{e^{-\beta H\left(\sigma_{1}, J\right)-\cdots-\beta H\left(\sigma_{n}, J\right)}} . \tag{6}
\end{equation*}
$$

- Performing the above calculation is only valid for integers, however we will perform an analytical continuation of the results to realize the limit.

Average values in disordered systems and the replica trick

- On disordered systems, at low temperature and in the thermodynamic limit we can have ergodicity breaking.
- It is useful to split these parts into "pure states" and if to each configuration we can assign one pure state then

$$
\begin{equation*}
\langle A\rangle=\frac{1}{Z} \int D \sigma e^{\beta H(\sigma)} A(\sigma)=\frac{1}{Z} \sum_{\alpha} \int_{\sigma \in \alpha} D \sigma e^{\beta H(\sigma)} A(\sigma)=\sum_{\alpha} w_{\alpha}\langle A\rangle_{\alpha} \tag{7}
\end{equation*}
$$

- An alternative form of the replica trick is:

$$
\overline{\langle A\rangle}=\lim _{n \rightarrow 0} \int D \sigma_{1} \cdots D \sigma_{n} A\left(\sigma_{1}\right) \overline{e^{-\beta H\left(\sigma_{1}, J\right)-\cdots-\beta H\left(\sigma_{n}, J\right)}}
$$

- The Hamiltonian is given by:

$$
\begin{equation*}
H=-\sum_{i_{1}>\cdots>i_{p}=1}^{N} j_{i_{1} \cdots i_{p}} \sigma_{i_{1}} \cdots \sigma_{i_{p}} \quad, p \geq 3 ; \tag{8}
\end{equation*}
$$

- To keep energy finite, the spins are continuous real variables such that $\sum_{i=1}^{N} \sigma_{i}^{2}=N . \rightarrow$ spherical constraint
- The couplings follow a Gaussian distribution:

$$
\begin{equation*}
p(J)=\exp \left(-\frac{1}{2} J^{2} \frac{2 N^{p-1}}{p!}\right) \tag{9}
\end{equation*}
$$

Notice that the variance goes to zero in the thermodynamic limit.

P-spin spherical model

- Annealed Free Energy \rightarrow Average of the partition function over the disorder:

$$
\bar{Z}=\int D \sigma \int \prod_{i_{1}>\cdots>i_{p} \geq 1} d J_{i_{1} \cdots i_{p}}^{N} \exp \left[-J_{i_{1} \cdots i_{p}}^{2} \frac{N^{p-1}}{p!}+J_{i_{1} \cdots i_{p}} \beta \sigma_{i_{1}} \cdots \sigma_{i_{p}}\right]
$$

- The integral over the spins is over a spherical surface (remember the constraint!).
- The integrals on the couplings are Gaussian integrals.

Sidenote

We can ignore the normalization constants as they will disappear when we take the logarithm and the thermodynamic limit.

Annealed Free Energy

Calculation

- Performing the Gaussian integration for each coupling leaves us with:

$$
\begin{equation*}
\bar{Z}=\int D \sigma \exp \left[\frac{\beta^{2}}{4 N^{p-1}} p!\sum_{i_{1}>\cdots>i_{p} \geq 1}^{N} \sigma_{i_{1}}^{2} \cdots \sigma_{i_{p}}^{2}\right] \tag{11}
\end{equation*}
$$

- As $N \rightarrow \infty$, we have that $p!\sum_{i_{1}>\cdots>i_{p} \geq 1}^{N} \approx \sum_{i_{1} \cdots i_{p}=1}^{N}$. This simplifies to:

$$
\begin{equation*}
\bar{Z}=\int D \sigma \exp \left[\frac{\beta^{2}}{4 N^{p-1}}\left(\sum_{i=1}^{N} \sigma_{i}^{2}\right)^{p}\right]=\exp \left[\frac{N \beta^{2}}{4}\right] \Omega \tag{12}
\end{equation*}
$$

where Ω is the surface of the sphere.

Free Energy per site

$$
F=-\beta / 4-\frac{\log \Omega}{\beta N}
$$

P-spin Spherical Model

Replica Calculation

- To make use of the replica trick we need to calculate $\overline{Z^{n}}$. We will make use of indices a, b to signify the replicas.

$$
\begin{equation*}
\overline{Z^{n}}=\int D \sigma_{i}^{a} \int \prod_{i_{1}>\cdots>i_{p} \geq 1}^{N} d J_{i_{1} \ldots i_{p}}^{N} \exp \left[-J_{i_{1} \ldots i_{p}}^{2} \frac{N^{p-1}}{p!}+J_{i_{1} \ldots i_{p}} \beta \sum_{a=1}^{n} \sigma_{i_{1}}^{a} \cdots \sigma_{i_{p}}^{a}\right] \tag{13}
\end{equation*}
$$

- Performing the Gaussian integration and using the thermodynamic limit to swap the sums yields:

$$
\begin{equation*}
\overline{Z^{n}}=\int D \sigma_{i}^{a} \exp \left[\frac{\beta^{2}}{4 N^{p-1}} \sum_{a, b=1}^{n}\left(\sum_{i=1}^{N} \sigma_{i}^{a} \sigma_{i}^{b}\right)^{p}\right] \tag{14}
\end{equation*}
$$

- We start with coupled sites and decoupled replicas and after averaging over the disorder we decoupled the sites and coupled the replicas.

Overlap and self-overlap of spin configurations

Overlap of spin configurations

An useful quantity to measure the similarity between two different spin configurations σ and τ is their overlap:

$$
\begin{equation*}
q_{\sigma \tau}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i} \tau_{i} \tag{15}
\end{equation*}
$$

The self-overlap is given by $q_{\sigma \sigma}=\frac{1}{N} \sum_{i=1}^{N} \sigma_{i}^{2}$.

- With Ising spins, $s_{i}= \pm 1$ the overlap can be:
- $1 \rightarrow$ Configurations are completely correlated
- $-1 \rightarrow$ Configurations are completely anti-correlated
- $0 \rightarrow$ Configurations are uncorrelated
- In our case, the overlaps between replicas will be represented by $Q_{a b}$. The spherical constraint ensures that $Q_{a a}=1$.
- Furthermore we have that $-1 \leq Q_{a b} \leq 1$.

Replica Calculation

Reframing the spin integral

- An useful property of the Dirac delta is:

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} f(\boldsymbol{x}) \delta(g(\boldsymbol{x})) d \boldsymbol{x}=\int_{g^{-1}(0)} \frac{f(\boldsymbol{x})}{|\nabla g|} d \sigma(\boldsymbol{x}) \tag{16}
\end{equation*}
$$

where $\sigma(\boldsymbol{x})$ is a surface measure of $g^{-1}(0)$.

- Strategy \rightarrow pass the spherical integral to an integral over all possible spins using $g\left(\sigma_{i}^{a}\right)=N-\sum_{i}\left(\sigma_{i}^{a}\right)^{2} \Longrightarrow|\nabla g|=4 N$.
- Pass to the Fourier representation of the Dirac delta.
- We also have that:

$$
\begin{equation*}
1=\int d Q_{a b} \delta\left(N Q_{a b}-\sum_{i} \sigma_{i}^{a} \sigma_{i}^{b}\right)=\int d Q_{a b} \int d \lambda_{a b} e^{\lambda_{a b}\left(N Q_{a b}-\sum_{i} \sigma_{i}^{a} \sigma_{i}^{b}\right)} \tag{17}
\end{equation*}
$$

Replica Calculation

- Using the Dirac delta property from the previous slide and introducing the integrals over $Q_{a b}$ for $a \neq b$ we have:

$$
\begin{equation*}
\overline{Z^{n}}=\int D Q_{a b} \int D \lambda_{a b} \int D \sigma_{i}^{a} \exp \left[\frac{\beta^{2} N}{4} \sum_{a, b=1}^{n} Q_{a b}^{p}+N \sum_{a, b=1}^{n} \lambda_{a b} Q_{a b}-\sum_{i=1}^{N} \sum_{a, b=1}^{n} \lambda_{a b} \sigma_{i}^{a} \sigma_{i}^{b}\right] \tag{18}
\end{equation*}
$$

- We can perform the integral over the spins, which is an n-dimensional Gaussian integral, yielding:

$$
\begin{equation*}
\overline{Z^{n}}=\int D Q_{a b} \int D \lambda_{a b} \exp [-N S(Q, \lambda)] \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
S(Q, \lambda)=-\frac{\beta^{2}}{4} \sum_{a, b=1}^{n} Q_{a b}^{p}-\sum_{a, b=1}^{n} \lambda_{a b} Q_{a b}+\frac{1}{2} \log \operatorname{det}(2 \lambda) \tag{20}
\end{equation*}
$$

Caveat 1

The Free energy is given by:

$$
\begin{equation*}
F=-\lim _{N \rightarrow+\infty} \lim _{n \rightarrow 0} \frac{1}{n \beta N} \log \int D Q_{a b} D \lambda_{a b} \exp [-N S(Q, \lambda)] \tag{21}
\end{equation*}
$$

but we are unable to calculate the above unless we swap the limits.

Caveat 2

- We need to know which saddle point is the correct one.
- Criterion \rightarrow First correction to the saddle point method is a Gaussian integral, which should be well defined.
- Thus the eigenvalues of Hessian of $S(Q, \lambda)$ must all be positive.
- Using the formula $\frac{\partial}{\partial \lambda_{a b}} \log \operatorname{det} \lambda=\left(\lambda^{-1}\right)_{a b}$ the saddle point equations for $\lambda_{a b}$ and $Q_{a b}$ are:

$$
\begin{aligned}
2 \lambda_{a b} & =\left(Q^{-1}\right)_{a b} \\
0 & =\frac{\beta^{2} p}{2} Q_{a b}^{p-1}+\left(Q^{-1}\right)_{a b}
\end{aligned}
$$

- Using the above and performing the integral, we get

Free energy after saddle point calculation

$$
\begin{equation*}
F=-\lim _{n \rightarrow 0} \frac{1}{2 n \beta}\left(\frac{\beta^{2}}{2} \sum_{a, b=1}^{n} Q_{a b}^{p}+\log \operatorname{det} Q\right) \tag{22}
\end{equation*}
$$

Replica Symmetry Ansatz

- As all replicas are equivalent, it is not far-fetched to assume a replica symmetric form for Q :

$$
\begin{equation*}
Q_{a b}=q_{0}+\left(1-q_{0}\right) \delta_{a b} \tag{23}
\end{equation*}
$$

- As for the inverse matrix elements we have:

$$
\begin{equation*}
\left(Q^{-1}\right)_{a b}=\frac{1}{1-q_{0}} \delta_{a b}-\frac{q_{0}}{\left(1-q_{0}\right)\left[1+(n-1) q_{0}\right]} \tag{24}
\end{equation*}
$$

- This makes the saddle point equation

$$
\begin{equation*}
\frac{\beta^{2} p}{2} q_{0}^{p-1}-\frac{q_{0}}{\left(1-q_{0}\right)^{2}}=0 \tag{25}
\end{equation*}
$$

- $q_{0}=0$ is the paramagnetic solution, making it so that $F=-\frac{\beta}{4}$, the result obtained in the annealed calculation!

Replica Symmetry Ansatz

Non-trivial solutions

- We can rewrite the saddle point equation as

$$
\begin{equation*}
q_{0}^{p-2}\left(1-q_{0}\right)^{2}=\frac{2}{\beta^{2} p} \tag{26}
\end{equation*}
$$

- For large β, the solutions are associated with negative eigenvalues.

A brief detour

An order parameter

Edwards-Anderson order parameter

$$
q^{(1)}=\frac{1}{N} \sum_{i} \overline{\left\langle\sigma_{i}\right\rangle^{2}}
$$

- We can rewrite the order parameter as:

$$
\begin{equation*}
q^{(1)}=\frac{1}{N} \sum_{i, \alpha \beta} \overline{w_{\alpha} w_{\beta}\left\langle\sigma_{i}\right\rangle_{\alpha}\left\langle\sigma_{i}\right\rangle_{\beta}}=\sum_{\alpha \beta} \overline{w_{\alpha} w_{\beta} q_{\alpha \beta}}=\int d q \overline{P(q)} q \tag{27}
\end{equation*}
$$

where $P(q)=\sum_{\alpha \beta} w_{\alpha} w_{\beta} \delta\left(q-q_{\alpha \beta}\right)$ is the overlap distribution.

- Similarly we find:

$$
\begin{equation*}
q^{(k)}=\frac{1}{N^{k}} \sum_{i_{1} \cdots i_{k}} \overline{\left\langle\sigma_{i_{1}} \cdots \sigma_{i_{k}}\right\rangle^{2}}=\int d q \overline{P(q)} q^{k} \tag{28}
\end{equation*}
$$

- We can also use the replica trick to compute the order parameter:

$$
\frac{1}{N} \sum_{i} \overline{\left\langle\sigma_{i}\right\rangle^{2}}=\lim _{n \rightarrow 0} \overline{\int D \sigma_{i}^{a} \frac{1}{N} \sum_{i} \sigma_{i}^{1} \sigma_{i}^{2} e^{-\beta \sum_{a} H\left(\sigma^{a}\right)}}=\cdots=\lim _{n \rightarrow 0} Q_{12}^{S P}
$$

A brief detour

An order parameter

- If there is no replica symmetry then it could be that $Q_{12}^{S P} \neq Q_{34}^{S P}$. Nonsense! Choice of indices should not matter!
- There may be other saddle points with the same free energy which correspond to the several choices of indices we can make.
- As such, we should average all these saddle points, yielding:

$$
\begin{equation*}
q^{(1)}=\lim _{n \rightarrow 0} \frac{2}{n(n-1)} \sum_{a>b} Q_{a b}^{S P} \tag{29}
\end{equation*}
$$

and similarly we can generalize

$$
\begin{equation*}
q^{(k)}=\lim _{n \rightarrow 0} \frac{2}{n(n-1)} \sum_{a>b}\left(Q_{a b}^{S P}\right)^{k} \tag{30}
\end{equation*}
$$

Connecting the physics with the replicas

- The previous equations leads us to conclude that

$$
\begin{equation*}
\int d q \overline{P(q)} f(q)=\lim _{n \rightarrow 0} \frac{2}{n(n-1)} \sum_{a>b} f\left(Q_{a b}^{S P}\right) \tag{31}
\end{equation*}
$$

- With $f(q)=\delta\left(q-q^{\prime}\right)$ we get:

$$
\begin{equation*}
\overline{P(q)}=\lim _{n \rightarrow 0} \frac{2}{n(n-1)} \sum_{a>b} \delta\left(Q_{a b}^{S P}-q\right) \tag{32}
\end{equation*}
$$

- The entries of $Q_{a b}^{S P}$ are the possible overlaps between pure states. The total number of equal elements is related to the probability of such an overlap occurring.

Revisiting the replica symmetric ansatz

- The average overlap distribution is $\overline{P(q)}=\delta\left(q-q_{0}\right)$.
- The overlap distribution also contains the self-overlaps of the pure states.
- As there is only one possible overlap this must be the self-overlap of the only existing pure state, the paramagnetic state.
- Assuming a replica symmetric ansatz \Longrightarrow System only has one equilibrium state.
- If there is ergodicity breaking at low temperatures we must search for a replica symmetry breaking form for the matrix in order to have more than one equilibrium state.

Replica symmetry breaking

- Overlap between replicas is related to overlap between states.
- The self-overlap of a state is the average overlap between configurations of said state.
- We expect that the overlap between configurations of the same state is greater than the one with configurations from different states.
- What is the simplest possible ergodicity breaking we can have?
- Have the overlap between configurations of the same state be $q_{1}<1$.
- Have the overlap between configurations of different states be q_{0}, with $q_{1}>q_{0}$.

Replica symmetry breaking

The overlap matrix

- Replicas are like configurations! Let us cluster them into "states". Replicas may belong to the same state or not.
- Assuming a clustering of $m=3$ replicas per group we have:

$$
Q_{a b}=\left[\begin{array}{ccccccc}
1 & q_{1} & q_{1} & & & & \tag{33}\\
q_{1} & 1 & q_{1} & & q_{0} & & \cdots \\
q_{1} & q_{1} & 1 & & & & \\
& & & 1 & q_{1} & q_{1} & \\
& q_{0} & & q_{1} & 1 & q_{1} & \\
& & & q_{1} & q_{1} & 1 & \\
& \vdots & & & & & \ddots
\end{array}\right]
$$

- This is called the one step replica symmetry breaking, or 1RSB.

Replica symmetry breaking

Overlap distribution

- The associated overlap distribution is:

$$
\begin{equation*}
\overline{P(q)}=\frac{m-1}{n-1} \delta\left(q-q_{1}\right)+\frac{n-m}{n-1} \delta\left(q-q_{0}\right) \tag{34}
\end{equation*}
$$

with $1 \leq m \leq n$.

- Taking the $n \rightarrow 0$ limit we obtain

$$
\begin{equation*}
\overline{P(q)}=(1-m) \delta\left(q-q_{1}\right)+m \delta\left(q-q_{0}\right) \tag{35}
\end{equation*}
$$

- It is clear then that for $\overline{P(q)}$ to remain a probability distribution we must have $0 \leq m \leq 1$, after taking the limit $n \rightarrow 0$.
- Thus we have three parameters, the two values of the overlaps q_{0} and q_{1} and the parameter m, which controls the probability of each overlap.

Replica symmetry breaking

The free energy

- Knowing the structure of the matrix $Q_{a b}$ if we calculate its eigenvalues and their multiplicity we are able to simplify the free energy to:

$$
\begin{aligned}
-2 \beta F_{1 R S B}= & \frac{\beta^{2}}{2}\left[1+(m-1) q_{1}^{p}-m q_{0}^{p}\right]+\frac{m-1}{m} \log \left(1-q_{1}\right)+ \\
& +\frac{1}{m} \log \left[m\left(q_{1}-q_{0}\right)+\left(1-q_{1}\right)\right]+\frac{q_{0}}{m\left(q_{1}-q_{0}\right)+\left(1-q_{1}\right)}
\end{aligned}
$$

- Both the $q_{1} \rightarrow q_{0}$ as well as the $m \rightarrow 1$ limits lead to the same free energy one would obtain in the replica symmetric ansatz.
- The only remaining thing to do is to solve the saddle point equations with respect to the parameters m, q_{0}, q_{1}.

Replica symmetry breaking

Solving the saddle point equations

- The equation $\partial_{q_{0}} F=0$ gives $q_{0}=0$. As we are in the absence of external magnetic field we expect the distribution of states across phase space to be symmetric, with all states being orthogonal to each other.
- The other two equations are:

$$
\begin{align*}
(1-m)\left(\frac{\beta^{2}}{2} p q_{1}^{p-1}-\frac{q_{1}}{\left(1-q_{1}\right)\left[(m-1) q_{1}+1\right]}\right) & =0 \tag{36}\\
\frac{\beta^{2}}{2} q_{1}^{p}+\frac{1}{m^{2}} \log \left(\frac{1-q_{1}}{1-(1-m) q_{1}}\right)+\frac{q_{1}}{m\left[1-(1-m) q_{1}\right]} & =0 \tag{37}
\end{align*}
$$

- We can solve the first equation by setting $m=1$. There we find a non-trivial stable solution q_{s} at a temperature T_{s}.
- Note that $q_{1}=0$ is also a solution, leaving m undetermined. \rightarrow paramagnetic phase

Replica symmetry breaking

Interpreting the transition

- For $T>T_{s}$ we only have one state and $P(q)=\delta\left(q-q_{0}\right)$.
- At $T=T_{s}$ we already have $q_{s} \neq 0$, thus the states are already well formed.
- Lowering the temperature gives a solution with $m<1$ and $q_{1}>q_{s}$.
- However, $m=1$ makes it so that the probability of these states is zero, growing as we continue to decrease the temperature.

$$
\begin{equation*}
\overline{P(q)}=(1-m) \delta\left(q-q_{1}\right)+m \delta\left(q-q_{0}\right) \tag{38}
\end{equation*}
$$

Concluding Remarks

- The 1RSB has been proven to be exact. If we were to perform additional steps we would obtain trivial contributions from the saddle point equations.
- Using the 1 RSB we found a transition between the paramagnetic phase and a spin-glass phase at low temperature.
- The reason why the states are well-formed at the transition has to do with the existence of metastable states above T_{s}. These are not captured by this static analysis.

The end.

Any questions?

Main References

- Castellani, T., \& Cavagna, A. (2005). Spin-Glass Theory for Pedestrians. Journal of Statistical Mechanics: Theory and Experiment, 2005(05), P05012. https://doi.org/10.1088/1742-5468/2005/05/P05012
- Crisanti, A., \& Sommers, H.-J. (1992). The spherical p-spin interaction spin glass model: The statics. Zeitschrift Für Physik B Condensed Matter, 87(3), 341-354. https://doi.org/10.1007/BF01309287
- Morone, F., Caltagirone, F., Harrison, E., \& Parisi, G. (2014). Replica Theory and Spin Glasses. ArXiv:1409.2722 [Cond-Mat]. http://arxiv.org/abs/1409.2722

